首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51673篇
  免费   6104篇
  国内免费   2941篇
电工技术   4416篇
综合类   3919篇
化学工业   12612篇
金属工艺   4132篇
机械仪表   2380篇
建筑科学   5261篇
矿业工程   914篇
能源动力   4307篇
轻工业   2248篇
水利工程   911篇
石油天然气   2066篇
武器工业   816篇
无线电   4216篇
一般工业技术   7680篇
冶金工业   1789篇
原子能技术   885篇
自动化技术   2166篇
  2024年   125篇
  2023年   962篇
  2022年   1414篇
  2021年   1878篇
  2020年   2025篇
  2019年   1808篇
  2018年   1665篇
  2017年   2073篇
  2016年   2092篇
  2015年   2154篇
  2014年   3050篇
  2013年   3558篇
  2012年   3611篇
  2011年   3735篇
  2010年   2859篇
  2009年   2956篇
  2008年   2554篇
  2007年   3269篇
  2006年   3090篇
  2005年   2458篇
  2004年   2158篇
  2003年   1751篇
  2002年   1552篇
  2001年   1349篇
  2000年   1028篇
  1999年   802篇
  1998年   713篇
  1997年   654篇
  1996年   553篇
  1995年   467篇
  1994年   360篇
  1993年   312篇
  1992年   291篇
  1991年   273篇
  1990年   224篇
  1989年   178篇
  1988年   143篇
  1987年   90篇
  1986年   80篇
  1985年   86篇
  1984年   81篇
  1983年   58篇
  1982年   59篇
  1981年   33篇
  1980年   20篇
  1979年   10篇
  1977年   7篇
  1975年   6篇
  1959年   8篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
11.
Aqueous solutions of poly(vinylpyrrolidone) (PVP) of various concentrations (20, 25, and 28 wt%) were successfully spun into fibers by centrifugal spinning. The pristine PVP fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free anodes in lithium-ion batteries. These flexible carbon fibers were prepared by developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP precursor fibers, and to prevent fiber degradation during carbonization. The thermogravimetric analysis data showed that the annealed fibers yielded a residual mass percentage of 36.0% while the pristine PVP fibers suffered a higher mass loss and only retained 26.5% of original mass above 450 °C (under nitrogen). The electrochemical performance of the carbon-fiber anodes was evaluated by conducting galvanostatic charge/discharge, rate performance, and cycle voltammetry experiments. The 20, 25, and 28 wt% derived binder-free anodes delivered specific charge capacities of 205, 189, and 275 mAh g−1, respectively, after the first cycle at a current density of 100 mA g−1. The results obtained in this work indicate that a feasible pathway towards a large-scale production of carbon-fiber anodes from a 100% aqueous solution can be achieved via centrifugal spinning and subsequent heat treatment.  相似文献   
12.
The effects of particle size and carbon dioxide concentration on chemical conversion in engineered spherical particles undergoing calcium oxide looping are investigated. Particles are thermochemically cycled in a furnace under different carbon dioxide concentrations. Changes in composition due to chemical reactions are measured using thermogravimetric analysis. Gas composition at the furnace exit is evaluated with mass spectroscopy. A numerical model of thermal transport phenomena developed previously is adapted to match the physical system investigated in the present study. The model is used to elucidate effects of reacting medium characteristics on particle temperature and reaction extent. Experimental and numerical results show that (1) an increase in particle size results in a decrease in carbonation extent, and (2) the carbonation step consists of fast and slow reaction regimes. The reaction rates in the fast and slow carbonation regimes increase with increasing carbon dioxide concentration. The effect of carbon dioxide concentration and the distinction between the fast and slow regimes become more pronounced with increasing particle size.  相似文献   
13.
14.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   
15.
CrAlYN coatings with different Y contents (0, 5 and 12 at.%) were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure, mechanical and thermal properties of CrAlN coatings by using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermal gravimetric analysis and nanoindentation. The structural transformation of single phase cubic Cr0.42Al0.58N and Cr0.39Al0.56Y0.05N coatings to cubic–wurtzite mixed Cr0.32Al0.56Y0.12N coating leads to a drop in hardness from (30.2±0.7) GPa of Cr0.42Al0.58N and (32.0±1.0) GPa of Cr0.39Al0.56Y0.05N to (25.2±0.7) GPa of Cr0.32Al0.56Y0.12N. The incorporation of 5 at.% Y retards the thermal decomposition of CrAlN, verified by the postponed precipitation of w-AlN and N-loss upon annealing. Correspondingly, Cr0.39Al0.56Y0.05N coating consistently exhibits the highest hardness value during thermal annealing. Nevertheless, alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.  相似文献   
16.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
17.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
18.
《Ceramics International》2021,47(24):34845-34850
The interfacial delamination of electrode/ceramic multilayer structure will seriously damage the reliability of low temperature co-fired ceramic (LTCC) module in practical applications. In this work, three kinds of glasses employed in Au electrode are designed and prepared to study the abnormal expansion and delamination process in the Au/ceramic LTCC multilayer structure. The interfacial delamination in the co-fired structure is found to be attributed to the abnormal expansion of glass in respect to Au electrode at high temperature, which is originated from the enlarged closed pores during the co-firing process. This conclusion is further confirmed by co-firing the sample in a low-pressure condition. The mechanism and elimination of interfacial delamination here provides a feasible solution for the design of novel glasses in Au electrode for LTCC applications.  相似文献   
19.
Brazing, as a common method of bonding ceramic and metal, has been applied in microelectronics, aerospace, machinery and other domains extensively. The residual thermal stress in the brazed joint has direct effects on the mechanical properties of the joint, so how to control the generation of residual thermal stress has become the vital point. In this paper, the methods of reducing residual thermal stress in the brazing process in recent years are reviewed. The generation and effects of residual thermal stress in the brazed joint are introduced. Besides, the methods of detecting residual thermal stress are discussed, and different methods of reducing residual thermal stress in brazed joints are also analyzed. Finally, the future development directions of reducing residual thermal stress in the brazed joint are proposed.  相似文献   
20.
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号